Year 12 Mathematics Applications Test 4 2021 Calculator Assumed **Time Series Data** STUDENT'S NAME Solutions DATE: Friday 25th June TIME: 40 minutes MARKS: 38 **INSTRUCTIONS:** Standard Items: Special Items: Pens, pencils, drawing templates, eraser Three calculators, notes on one side of a single A4 page (these notes to be handed in with this Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks. This page has been intentionally left blank ## 1. (5 marks) The graph above shows the sales at a local restaurant over a 14 day period. A 3 point moving average and a 5 point moving average have been fit to the model. - (a) On the legend in the graph clearly label the 3 point moving average and the 5 point moving average. - (b) Which moving average is most appropriate for the given data? Explain your answer. The 5 pt MA is the best fit for this data. [2] It best smooths the data and 5 seasons make a cycle in this data set. Vencludes 5 pt V 1 valid reason - (c) Explain the purpose of fitting a moving average to time series data. [2] To smooth the data and show the underlying trend, Smooth data underlying hend #### 2. (5 marks) Cirque De Moon performed a certain number of times a week for the past four weeks. The attendance data and associated moving averages for the first four weeks have been plotted below. 4 pt CMA 1 4pt V centered Describe the trend in attendance over these four weeks. (b) There is a long term decreasing trend. / decreasing Cirque De Moon need 1000 attendees on average per day to make their performance (c) financially worthwhile. Should the company continue its performances into a 5th week? Explain your answer. The moving overage dips below 1000 at the end of week 4, therefore not worthwhile to continue performances in week 5. Concludes No Page 3 of 6 Voliscusses M.A. In Suitable explanation [2] [1] # 3. (17 marks) The table below shows the number of plastic bags purchased during the week (Mon to Fri) over a three-week period. | | | | | | ~ . | | ~ 11 | |------|-----------|----------|-------------------|---------|---------------|--------------------|-----------------------------| | Week | Day | Time (t) | Bags
(in 100s) | 5 Pt MA | Cycle
Mean | Seasonal
Effect | Seasonally
Adjusted Data | | 1 | Monday | 1 | 14 | | | 26.62% | 58.4 | | | Tuesday | 2 | 17 | | | 32.32% | 47.8 | | | Wednesday | a 3 | 22 | 53 | <i>b</i> 53 | 41.83% | 44.9 | | | Thursday | 4 | 120 | 53 | | 228.14% | 55.5 | | | Friday | 5 | 90 | 54 | | 171.10% | 51.4 | | | | | | | | | | | 2 | Monday | 6 | 15 | 57 | 61.8 | 24.27% | 62.6 | | | Tuesday | 7 | 24 a | 59 | | 38.83% | 67.5 | | | Wednesday | 8 | 35 6 | 62 | | 56.63% | 71.4 | | | Thursday | 9 | c 180 - | - 62 | 563 | d | 60.1 | | | Friday | 10 | 105 & | 63 | | 169.90% | 60.0 | | | | | • | | | | | | 3 | Monday | 11 | 16 . | 63 | | 21.05% | 66.7 | | | Tuesday | 12 | 27 | e 69 | | 35.53% | 75.9 | | | Wednesday | 13 | 37 | 76 | 76 | 48.68% | 75.4 | | | Thursday | 14 | 160 | | | 210.53% | 74.0 | | | Friday | 15 | 140 | | | 184.21% | 80.0 | $$0 = \frac{3}{14 + 17 + 22 + 120 + 90}$$ $$= 52.6 \text{ or } 53$$ $$C = 24 + 35 + c + 105 + 16 = 62$$ $$C = 130$$ $$d = \frac{130}{61.8} \times 1000$$ $$= 210.36\%$$ $$e = 105 + 16 + 27 + 37 + 160$$ $$= 69$$ (b) Complete the table showing the seasonal index for each season. | Monday | Tuesday | Wednesday | Thursday | Friday | |--------|---------|-----------|----------|--------| | 24.0% | 35.6% | 49.0% | 216.3% | 175.1% | $$32.32 + 38.83 + 35.53 = 35.56$$ [5] [2] Complete the graph on the previous page by plotting the last two moving averages. / plots I correctly(c) I plots both \$ (d) Show how the seasonally adjusted figure of 55.5 for Thursday week 1 was calculated. Verificitly uses division $$\frac{120}{216.3} \times 100 = 55.478$$. $\sqrt{200} \times 100 = 55.478$ Determine the least squares line using the seasonally adjusted figures. (e) $$D = 2.0564 t + 46.9886$$ I correct a value V correct b value, uses t [2] Using your line from part (e), estimate the number of bags that will be purchased on (f) Wednesday of week 4. [4] $$D(18) = 0.0564(18) + 46.9886$$ = 84.004 #### 4. (10 marks) The quarterly seasonal index for the number of visitors to the local swimming pool for the 2nd quarter of the year is 0.73. Comment on the number of visitors to the pool in relation to the average quarterly (a) [2] number. During the second quarter attendance is 27% below the average quarterly number of visitors / below - The number of visitors to the pool in the 2^{nd} quarter of 2019 was 21 000. (b) - Determine the seasonally adjusted number of visitors to the pool in this quarter. (i) $\frac{21\ 000}{0.73} = 28767.123...$ V divides by SI V rounds to whole number (ones, tens, hundreds) 28 800 Determine the total number of visitors to the pool in 2019. (ii) Vestimate using $\frac{21000}{0.73} \times 4 = 115068, 4932...$ ~ 115 000 visitors The line of best fit through the seasonally adjusted figures for the quarterly visitors for (c) 2017 to 2020 is $s = 1400t + 13\,000$ where the 1st quarter of 2017 is t = 1. Predict the number of visitors to the pool in 2nd quarter of 2025. [3] > t = 33S(33) = 1400 (33) +13000 = 475 000 475000 × 0.73 = 346 750 visitors / t = 33 V subs value (d) Comment on the reliability of your prediction in part (c). [2] The prediction is unreliable as it is 5 years into the future and we only have 4 years of data. Page 6 of 6